子供における学習方略としての自己テストの役割

多鹿秀経¹ 堀田千絵²

Self-Testing as a Learning Strategy in Children

Hidetsugu TAJIKA¹ Chie HOTTA²

要 旨
本論文の目的は、頑健な学習効果を生み出す学習方略の1つとして、最近多くの研究で報告されだした自己テストを取り上げ、子供（幼児・児童）における学習方略としての自己テストの役割をreviewした。

学習方略としての自己テストに関する研究は、主に大学生を対象者として報告されることが一般的であった。本論文では、子幼児と児童の子供を研究対象者として実施してきた自己テストの研究をまとめた。その結果、子供を研究対象にした自己テスト研究は、単に子供の記憶成績の向上というテスト効果の報告に留まらず、実行機能を含むメタ認知と動機づけの活性化の役割が認められることを指摘して考察した。

キーワード：子供、自己テスト、学習方略、メタ認知、実行機能、動機づけ

1 本研究の目的

テスト効果（testing effect）とは、以前に学習した材料をテストすることが、同じ時間をかけて同一の材料を再学習することよりも、学習材料の保持がよくなることを意味する（Roediger & Karpicke, 2006；多鹿・堀田, 2013）。学習材料をテストすることとは、これまでの研究から判断すると、通常測定・評価の道具としてとらえられている。つまり、テストを実施することは、まず学習した内容の定着の程度を確かめることにある（多鹿, 2010)。学習材料をテストすることは、授業で学習した内容の理解や記憶を吟味していることが多く、学習した内容の発展課題あるいは応用課題として、転移の可能性を測定することもしばしば認められる。

測定・評価の道具として位置づけられるこのテストすることは、当該テストの実施後、学習者に学習内容の理解度や進捗の程度をフィードバックすることで、学習への動機づけを高め、学習への取り組みを促し、かつ次の学習活動にどの様に取り組むかのプランを作成するためのメタ認知の活性化にもつながってくるといえるだろう（橋本, 1956；村山, 2006)。

しかしながら、最近の認知心理学の研究から、テストすることは、単に測定・評価の道具として位置づけるだけでなく、学習を促進するための道具として位置づけられることが報告されるようになってきた（たとえば, Brown, Roediger, & McDaniel, 2014/2016；Dunlosky, Rawson, Marsh, Nathan, & Willingham, 2013；Kornell & Vaughtn, 2016；Pyc, Agarwal, & Roediger,
子どもにおける学習方略としての自己テストの役割（多聞秀雄・堀田千絵）

学習材料の内容の保持をより堅固なものにし，かつ長期にわたって保持を高めるという学習の道具
に深く結びつくものであることがわかってきた。
上述したように，テストを実施することは，学習
材料の後の保持を高めるというテスト効果を生み
出すことからも，テストすることは強力な学習方
略の1つといってよいだろう。
では，テストすることの効果を吟味した実証研
究は，どのようなものであろうか。基本的な研究
の手続きと結果は以下のとおりである。たとえば
一連の単語からなる材料を，繰り返し4回反復し
て読みの学習を続ける学習者の群（SSSS群
（S
は study の頭文字で，単語材料を4回反復して
学習する群））と，1回だけ単語を学習し，その
後は3回連続してテストをおこなう学習者の群
（STTT群（T
は test の頭文字で，単語材料の学
習を1回おこない，その後学習した単語材料を3
回テストする群））の後テスト得点を比較する。
SSSS群とSTTT群は，どちらも同じ時間のもと
で条件が設定されている。それぞれの条件処理の
後，直接テストと一定の（通常は1日以上の）保
持時間の遅延テストの2種類のテストを実施する。
その結果，直接テストではSSSS群がSTTT群
よりも記憶成績が高く，遅延テストでは逆に
STTT群がSSSS群よりも記憶成績が高かった。
すなわち，学習時に，学習（単語の読み）ではな
くテスト（単語の再現）を介入させることによっ
て，STTT群は直接テストのときと比べて遅延テ
ストの記憶成績を維持することが確かめられた。
上述したように，この遅延テストの成績の維持の
結果，あるいは遅延テスト結果そのものをテスト
効果とよんでいる。
ところで，学習するための道具である学習方略
としてのテストすることを研究した上述の引用文
献は，主たる研究対象者が大学生（大人）であり，
また，大学生を使った研究成果のreviewである。
その理由としては，①米国の大学生の場合，テス
トによって悪い成績をとることは，奨学金の打ち
切りにつながることが多く，②場合によっては退
学を勧告されることがあり，さらには③大学とは
学ぶ場であるとのところ方が一般的である，こと
がえるといっぱいだろう。大学でよい成績を収め
ることは，米国の大学で学ぶ学生にとって当然の
義務と考えられていることによるともえる。そ
れ故，テストすることに関する研究は，最も効果
のある学習方略を利用することで，少しでもよい
成績をとりたいとする学生のニーズにマッチした
研究といえる。
以上のことから，テストすることで成績の上昇
を得ることが喫緊の課題である大学生（日本の場
合は，大学生よりも中学生・高校生だろう）を使っ
たテストすることの研究は，すでに多数の報告が
なされている。本論文では，大学生（青年）では
なく，子どもを使ったテストすることの研究を
reviewする。子どもを使ったテストすることの
研究のreviewをおこなうことで，単に子どもの
テスト効果の有無を見るだけでなく，テストする
ことの意味，すなわち子どもの学習方略の役割と
いてもよいだろう，を明確にすることが可能で
あると考える。
テスト効果を生み出すテストすることは，研究
者によって様々な用語で記述されてきた。テスト
することの用語として，一般的に広く用いられる
ものは，検索実践（retrieval practice）をあげる
ことができる。英語の学術用語ではなくみのある
retrieval practiceであるが，日本語として検索実
践の意味内容をすぐにイメージすることは，なか
なか容易ではない。本研究では，retrieval prac-
ticeと同様に，テスト効果の研究でよく使用され
ている自己テスト（self-testing）という用語を，
テストすることの意味で用いることにより。自
己テストは，以前に学習した材料についての質問
（同一の内容の質問でもよいし発展質問でもよいが，
一般的には学習材料の内容の再現を求める質問）
に自分で答えることである。それ故，本研究では，
検索実践と自己テストとは同一の内容に言及する
ものとする。同様に，Fiorella and Mayer（2015）
2 子どもにおける学習方略の使用

本研究で取り上げる子どもとは、幼児から小学生を対象としている。また、学習方略とは、これまでの発達研究でよく取り上げられてきた子どもの記憶方略を核にして、記憶に限定されない認知やメタ認知方略を含むものである。本研究では、幼児と児童の学習方略に焦点を当てている。学習方略の研究成果をまとめた辰野（2010）や、APAの心理学辞典を編集したVandenBos（2015）を参考にして、本研究で取り上げる学習方略は、学習を促進するために意図的に使用する心的・行動的方法である」ととらえる。「意図的」と記述した中に、訓練によって方略使用が可能になることも含む。Pressley and Hilden（2006）は、本文中では記憶方略という用語を多用しているが、章のタイトルは認知方略である。本研究でも、研究内容に対応して記憶方略、メタ認知方略、問題解決方略等と方略の名称を論文中では適宜変更するが、先行研究の方略名に沿って記述するだけであり、基本的には学習方略を意味するものである。

3 子どもを用いた学習方略としての自己テストの研究

学習方略としての自己テストは、一般に大学生を用いた研究で多数報告されている。大学生を用いた研究のreviewは、Roediger and Karpicke（2006）や多鹿（2008）を参照のこと。また、自己テストを教育とのかかわりからまとめたreviewは、Brownら（2014/2016）、Dunloskyら
（2013），Kornell and Vaughn (2016)，Pycら（2014），Roedigerら（2011），および多鹿・堀田（2013）を参照のこと。

長期の保持におけるテスト効果を見た古典的な研究例として知られる Gates (1917) の研究を、Roediger and Karpicke (2006) に従ってまとめると（183ページ），Gates は学習材料として無意味音節と文章を実験に参加した学童期の 1 年生から 8 年生の児童・生徒に読ませ，その後，記録した材料を再生するように教示した。この実験では，記録した学習材料を再生する一連の作業を暗唱（recitation）と呼び，暗唱の時間操作した。即ち，実験におけるトータルの学習時間は一定であり，学習時間の 0，20，40，60，80，90%を暗唱として自己テストに費やすための時間の割合として操作した。直後再生では提示順に再生を求め，3 ないし 4 時間後に再度再生テストを実施した。これを遡延再生と呼ぶ。実験の結果，無意味音節では 1 年生を除いて暗唱の効果が見られ，暗唱に時間をかけるほど再生率が高くなった。また，1 年生を使用していない文章材料でも，すべての学年で暗唱の効果が見られ，暗唱に時間をかけるほど再生率が高くなった。このことは，忘れた学習材料の再学習を含む暗唱による再生行為は，学習を促進することを示している。

また，Spitzer (1939) は，多数の小学 6 年生に文章を学習させ，直後テストの後63日の遡延の範囲で，様々なスケジュールに沿って多選択テストを実施した。その結果，各々の遡延後の最初にテストされた得点を結ぶと，63日までの遡延期間で典型的な忘却曲線が見られた。しかし，各遡延後の最初のテストの後に遡延期間を設けて再テストした場合，それらの得点は同じ遡延後の最初のテスト得点に比べて，高いものであった。

以下では，幼児や児童を研究対象とした最近の自己テストの研究を review しよう。

Karpicke, Blunt, and Smith（2016）は，3つの実験で10歳の小学生に単語リストを学習させたのち，単語リストの再学習が自己テストか自己テストかの 2 群に条件を分けた。その後，自由再生（実験 1 と 2）か再認（実験 3）の最終遡延テストを実施した。その結果，すべての遡延テストで自己テストの効果を見いただした。あわせて，児童の個々差の基準として読みテストと処理スピードに基づいて児童をチェックしたところ，自己テストの効果はこれらの個人差とは独立であり，自己テストは児童でも効果的な学習方略であることを示した。

Goossens, Camp, Verkoeijen, and Tabbers（2014a）は，小学 3 年生の児童を，20語を物語に挿入して読み聞かせる条件群か，個々の語を同義語と対にして読み聞かせる条件群に分けて，語の学習をおこなった。児童は10語を自己テストで，残り10語を反復学習した。自己テストの10語は5回の反復学習と2回の自己テストを実施した。一方，残りの10語は，7回の反復学習を行い，自己テストはおこなわなかった。学習の1週間後に，手がかり再生テストと多選択テストを実施した。その結果，手がかり再生では自己テストによる語の学習の成績がよかった。しかしながら，多選択テストでは，自己テストと反復学習で語の保持成績差はなかった。他方，2群（物語に埋め込まれる多語を学習する群 vs 対にした語を学習する群の児童の間では，対にした語を学習する群の児童の方がよい成績であった。

同じような語の学習研究であるが，Goossens, Camp, Verkoeijen, Tabbers, and Zwaan（2014b）は，小学 3 年生（平均年齢は 9 歳）の語彙の学習における自己テストの効果を検討した。語彙の学習とは，語彙を学習することで語彙の意味を理解し，語彙量を増やすことを意味している。小学 3 年生を，再学習群，精緻化による再学習群，ならびに自己テスト群の3群に分け，語の定義と練習をおこなった。再学習群の児童は，語を再読し部分的に後の定義をコピーした。精緻化による再学習群の児童は，語の定義を再読し，学習すべきターゲットの語と意味的に関連する語を結びつけて再読した。自己テスト群の児童は，語の定義に基づいて語を再生した。1週間後に，空欄を埋めるテストを実施したところ，自己テスト群の児童は他の群の児童よりも良い成績を収めた。しかし
し、多肢選択テストでは、3群の児童に成績の差は見られなかった。

Goossensら（2014a, 2014b）の2つの研究結果から、自己テストは一定の効果は示すが、多肢選択テストのような再認テストでは自己テストの効果がなかったことから、学習方法としての自己テストは、学校での教室での実践による積極的な効果には多少の疑問が残ったと考察した。

幼児を使った自己テストの研究として、Fritz, Morris, Nolan, and Singleton（2007）は、2つの実験を実施した。実験1では、幼児（3〜4歳）を自己テスト群、外発的な報酬あり群、統制群の3群に分け、6つのおもちゃの名前を学習させた。報酬は学習を改善しなかったが、自己テストは再生を統制群の2倍に増やした。実験2では、自己テスト群、再提示群、ならびに集中学習による精緻化群の3群に、おもちゃの名前を学習させた。再生は1分後、1日後、及び2日後であった。その結果、他の2群に比べ、自己テスト群の幼児の成績が高かった。再提示群との比較からいえることは、自己テスト群の幼児の促進効果は、半数が再生学習を取り入れ、他の半数は自己テストによるものであった。これらのことから、幼児であっても、自己テストは効果的な学習方法であることが分かった。

また、塚田（2015）は、語彙理解に遅れのある5歳児と6歳児（遅滞群とよぶ）と同年齢の健常児（統制群とよぶ）に対し、言語課題を用いて自己テストの効果を検討した。ここでいう語彙理解に遅れのある幼児とは、生活月齢よりも絵画語彙検査によって算出された語彙年齢が約20ヶ月の遅れを有する子どもであった。

研究の手続きは3段階で構成された。第1段階は学習材料を知らないかどうかのチェックと初回学習のセッションであった。たとえば、学習項目をたずね（例：ヘビは何を食べるか？）、「知らない」と回答した場合あるいは知らない様子が窺えた場合には、回答（例：ネズミなんだよ）を幼児に教えた。

第2段階は自己テストか反復聴取学習かの学習条件群の学習セッションであった。すべての幼児に対して、上記にあるような学習項目6項目のうち、半数については自己テスト項目として、残りの半数は反復聴取項目として設定した。自己テスト群は、各項目について質問し（例：ヘビは何を食べるか？）、幼児に回答を求め（例：ネズミ）、誤答や回答できない場合は、正答を即座にフィードバックした。これを3回反復して行った。反復聴取学習群では、各項目について質問と回答の両者をあわせて子どもに聞かせ（例：ヘビはネズミを食べるか？）、自己テスト条件と同様に3回連続して子どもに聞かせた。学習が成立しているかどうかの保持の確認のために、3回の自己テストおよび反復聴取直後に直後再生テストを実施した。

第3段階はテストセッションであった。テストは２種類であり、第2段階の5分後及び4時間後に保持テスト（遅延再生テスト）を実施した。実験の結果を表1に示した。表1から理解できるように、直後再生テスト（直後確認）では、自己テスト条件と反復聴取群の2群はほぼ天井効果の再生得点を示し、2群間で再生得点の違いは見られなかった。他方、5分後と4時間の遅延再生テスト結果では、2群に学習条件に違いが見られた。すなわち、理解に遅れのある遅滞群の方が効果は小さいものの、自己テスト群のほうが反復聴取学習群よりも再生得点が高いことが認められた。

| 表1 統制群と遅滞群における各学習条件による保持テストの平均正答率（SD）（塚田, 2015） |
|------------------|------------------|------------------|
| | 直後確認 | 5分後 | 4時間後 |
| **統制群** | | | |
| 聴取 | .98(.09) | .64(.20) | .56(.27) |
| 自己テスト | .98(.09) | .91(.15) | .80(.21) |
| 遅滞群 | | | |
| 聴取 | .91(.16) | .38(.31) | .36(.32) |
| 自己テスト | .91(.16) | .71(.25) | .71(.26) |

Hotta, Tajika, and Neumann（2017）は、Fritzら（2007）が学習課題として言葉を記憶させることによる自己テスト効果を吟味したのに対
し、言葉のいない空間位置を記憶させる課題を用いて、自己テストの効果を吟味した。研究対象児は5歳と6歳の幼児であった。幼児の学習課題は、上下2段からなり、各段が5つに区切られた箱に、ランダムに置かれた8種類のおもちゃの位置を覚えることであった。箱は10個のおもちゃが置ける状況になっていたが、配置したおもちゃの数は8個であった。おもちゃは幼児が日常使用したり食べたりするもので、たとえばバナナ、はさみ、自動車等であった。

研究の手続きは3段階で構成された。第1段階は実験に慣れるための学習導入のセッションであった。幼児はおもちゃがどの位置に置かれているのかを注意深く見るように教示された。実験者はおもちゃが置かれているところを示すことで、幼児に確認させた。あわせて、おもちゃ1つずつ取り除いた。このとき、学習の直後チェックとして、幼児が正しくおもちゃの位置を指し示すかどうかをチェックした。位置が間違った場合、実験者は幼児に正しい位置をフィードバックした。

第2段階は学習のセッションであった。第1段階で、実験の仕方に慣れた幼児を2群に分けた。自己テスト群の幼児（4 R群）は、「バナナはどこにありましたか」の質問に対して正確に回答すれば、実験者は「OK、正解です」と回答した。幼児の回答が間違っておれば、実験者は「残念、バナナはここにありましたね。よろしくですか」とフィードバックを与えて、正しい場所を確認させた。幼児と実験者とのようなやり取りを3回繰り返した。これに対し、他の群である反復学習群（4 S群）は、実験者が取り払ったおもちゃを、実験者と一緒に、幼児に再度箱の各位置に置かせる課題を3度繰り返した。幼児には、「私（実験者）と一緒に、そのおもちゃを箱の正しい位置に置くことができるか」と教示して、課題を繰り返した。

もちろん、間違った場所におもちゃを置いた場合（実験者の置く場所を見てから置くので、間違えることは少ない）、正しい場所を幼児にフィードバックしていた。自己テスト群も反復学習群も、学習セッションの学習時間は同じように調整した。

第3段階はテストセッションであった。テスト2種類からなり、第2段階の学習セッションの5分後に直後再生テストを実施した。幼児にはおもちゃを正しい位置に置くように教示した。学習セッションの1日後に、遅延再生テストを実施した。テスト時間は幼児のペースであった。

実験の結果を図1に示した。図1から理解できるように、直後再生テストでは、自己テスト群と反復学習群の2群はほぼ天井効果の再生得点を示し（両者の得点は、自己テスト群が .91 (SD = .17) で、反復学習群が .93 (SD = .13))，2群の間で再生得点の違いは見られなかった。他方、1日後の遅延再生テスト結果では2群に違いが見られ、自己テスト群のほうが反復学習群よりも再生得点が高いことが認められた（自己テスト群の得点が .62 (SD = .21) で、反復学習群の得点が .41 (SD = .21)）。もちろん、この結果は条件（自己テスト群と反復学習群）×テスト時期（直後と遅延）の交互作用が有意となり、テスト効果が認められたといえる。

図1 保持時間と学習タイプにおける平均正答率(Hotta et al., 2017)

Hotta（2017）の研究に先立ち、Rohrer, Taylor, and Sholar（2010）は、小学4年生と5年生に対して、地図を題材とした非言語の学習課題を用いた研究において、1日後における自己テストの効果を確認している。このように、研究数は少ないが非言語材料を使用した自己テストの研究においても、幼児や児童への自己テストの効果が見出され始めている。
4 子どもにおける学習方略としての
自己テストの役割

子どもにおける学習方略としての自己テストの役割として、ここでは、①記憶保持の促進効果、
②メタ認知の活性化、および③動機づけの活性化の3点について言及しよう。

3節までの説明から、子どもにおける学習方略としての自己テスト第一の役割として、自己テストをおこなった際に、検索に成功した情報はその後の保持を高めるという役割を指摘することができる。

子どもの自己テストが学習の保持を高めることは、すでに1900年代中頃に小学生を実験参加児として使用したGates（1917）ならびにSpitzer（1939）の研究結果からも明白である。ただし、それらの研究は児童が中心であるが、幼児を使ったHottaら（2016）の研究においても、同様に自己テストによる学習課題の長期の保持の促進効果を見ている。

自己テストによる学習材料の促進結果を生み出すという役割は、これまで主に大学生を使用しておこなわれた自己テストの研究において確認されていたものであった。大学生を実験参加者として見いだされたこの促進効果としての役割は、子どもの役割にまで敷衍して説明することが可能である。大学生を使用した研究では、学習の保持の促進効果に加えて、学習していない内容の促進効果をも報告している研究が散見される（Chan, McDermott, & Roediger, 2006）。ただし、まったく学習していない内容といっても、自己テストされた学習内容に意味的に共有された材料を意味している。このような結果は、まだ子どもを使った研究では報告されていない。

自己テストが学習材料の保持の促進効果を示すという結果は、さまざまな解釈が可能である。Karpike, Lehman, and Aue（2014）を参考にして、促進効果の主だった解釈を挙げると、①貯蔵と検索の努力、②貯蔵と検索の強度、③転移適切処理、④符号化の多様性、⑤精緻化による検索、ならびに⑥エピソード文脈、を指摘することができる。本論文は、自己テスト効果の解釈に言及するものではないが、自己テストによる記憶の促進効果を説明する①から⑥の内容を簡潔にまとめてみよう。

①の貯蔵と検索の努力とは、貯蔵される情報の記憶表象が検索をおこなうことによって強化され、その強化の程度は検索時努力の水準に依存するというものである。

②の貯蔵と検索の強度とは、①に直接関連するが、検索は記憶項目の質（貯蔵の強度）とその項目を取り出す手がかりの力（検索の強度）からなる。検索を利用することで、つまり学習項目を再生することで、検索の強度がより増すというものである。

③の転移適切処理とは、学習の間に検索を入れることで、検索が最終テストと同じ条件の実践になるというものである。

④の符号化多様性とは、学習項目を多数回経験（学習）することで、それらの項目の符号化が多様に展開されることを意味する。その結果、将来アクセスしなければならない検索のルートを増やすことによるというものである。

⑤精緻化による検索とは、検索過程において生じると考えられる、意味的な精緻化によるというものである。つまり、通常であれば符号化時に加工される情報の精緻化が、検索時にテストを繰り返すことで、検索時に意味的な精緻化がなされるというものである。

最後に、⑥エピソード文脈とは、Karpinkeら（2014）が自己テストの解釈として推奨する説明であり、自己テストによる文脈の復元、文脈の更新、ターゲット項目への探索の範囲を限定すること、といった学習者自身のエピソード文脈によるというものである。

大学生を使用して得られた自己テストの結果を解釈する説明は、上記のような6つを見いだすことができ、これらの解釈は、自己テストによる学習が、反復学習に対して長期の記憶成績で優位を示す結果を説明するために提出されたものである。
子どもにおける学習方略としての自己テストの役割（多鹿秀雄・堀田千絵）

もちろん、自己テストが反復学習に対して長期の記憶成績で優位を示す結果は、大学生を使用した研究だけでなく、子どもを使用した研究でも徐々に報告されるようになってきた。このことから、子どもにおける学習方略としての自己テストの役割として第1に取り上げるべき役割は、このような長期の記憶水準の維持としての役割であろう。

幼児期には記憶方略の使用が認められない、あるいは認められても自発的に使用しないというこれまでの研究と同様に、自己テストの場合も、幼児は自発的に自己テストをおこなわない。自己テストの自発的な使用は、大学生でも少ないことが知られている（Karpicke, Butler, & Roediger, 2009）。Karpickeらの研究では、大学生のわずか11％（調査対象の大学生177名の中の19名）が、自己テストを学習中に使用すると回答していたに過ぎない。まして、幼児や児童を使用した研究では、自己テストを自発的に方略として使用する事例は皆無といってよいだろう。幼児や児童を使用した研究では、自己テストを実験者が導入することが一般的である。幼児を使用したHottaら（2016）の研究も、実験の手続きとしての自己テストを導入しているだけで、自発的に自己テストを方略として使用させる課題を設定していなかった。

子どもにおける学習方略としての自己テストの第2の役割として、メタ認知の活性化をあげることができる。

大学生の場合、テストを受けることによって、何か理解できており何がまだ不明確な理解であるかを、学習者が確認できるようになる。その結果、学習者は当該テーマに関する知識のギャップを知ることによって、まだ不明確な知識をより確実なものとするために、時間をかけて学習し、自己テストを繰り返すという努力を導入するであろう。自己テストにより知識のギャップを知る効果は、メタ認知の活性化といってよい。すなわち、学習材料の再学習よりも学習材料のテストを繰り返すことによって、学習者は学習内容のメタ認知的モニタリング（以下では、モニタリングと呼ぶ）やメタ認知的コントロール（以下では、コントロールと呼ぶ）をより適切に実行できるようになるといえる。

自己テストによるモニタリングの一例として、順向干渉を受けにくいことが報告されている（Pierce, Gallo, & MaCain, 2017）。すなわち、先行の学習が後続の学習を妨害することを順向干渉というが、Pierceらの実験において、大学生の学習者は自己テストにより検索後のモニタリングを働かせることで、順向干渉を減らすことにつながっているとした。

では、子どもの場合はどうか。小学校6年生を使えた橋本（1959）の研究では、児童に一定の学習内容を学習させたのち、再学習の直前にテストを受けた児童が再学習のみの児童に比べて、その後のテストでより良成績を収めたことを報告している。このことは、テストを何が学習でいて何が学習でいていないかを再確認する機会として学童がとらえ、学習でていない内容に力点をおいて再学習した結果、学習でていない内容の理解が進んだことを意味しているといえよう。小学校6年生にもなれば、自己テストがメタ認知の活性化につながるといえよう。

ただ、保育園児や幼稚園児を対象とした幼児の自己テストの場合はどうであろうか。メタ認知による行動の気づきと制御が可能となる小学校中学年以降と異なり、幼児の場合は、自己テストによって学習内容の自己評価を適切に実行するとは考えられない（Brown et al., 1983）。幼児の場合は、メタ認知による学習内容の自己評価というよりも、むしろ最近多くの研究で指摘される実行機能（executive function）とのかたちで、自己テストの役割を考察することができるだろう。

実行機能の正確な定義は研究者の間で一致をみているわけではなく、さまざまな定義が了解されている（Muller & Kerns, 2015）。ここでは、実行機能とはプランにしたがって行動を進める働きであり、換言すれば、長期記憶から検索された知識を使ってどうすべきかを決定することであるととらえおこう（ Bjorklund & Caussey, 2018； — 80 —
Diamond, 2013）。なお、実行機能は実行制御（Brown et al., 1983）とも呼ばれている。

実行機能の働きについては、一般にはワーキングメモリ（working memory）の研究、抑制の研究（inhibitory control）、ならびに認知の柔軟性（cognitive flexibility）の研究の3領域から研究がなされてきている（Diamond, 2013; Muller & Kerns, 2015）。ワーキングメモリの研究とは、一度にどの程度の情報を保持しつつ同時に処理に利用できることかということである。抑制の研究は、必要な情報にのみ注意を向け、他に必要な情報は抑制して注意を向けるといった、注意や思考のコントロールにかかる研究を意味する。日常的の言葉でいえば、取り組む課題に注意を集中することといえる。さらに、認知の柔軟性の研究では、課題へのアプローチや視点を柔軟に変えることで当該の課題に取り組み、型にはまらず柔軟に思考することにかかわる研究である。

実行機能の働きと自己テストの関連は、メタ認知の活性化の延長にあるとしてよい。自己テストをおこなうことは、学習すべき課題の内容を実行する際において、どのような方法を用いてどのように取り組み、貯蔵した情報どのようにアクセサすればよいかを内省することである。これは、メタ認知を活性化することによって、どの情報に注意を向け、どの情報を無視すればよいか、アクセスすべきターゲット項目に注意を集中するという、自己制御（self-control）のメカニズムを働かせることも含まれるであろう。自己テストを繰り返し行なうことで、記憶に貯蔵された情報のなかで、課題要求に合致する情報はどのようなものであったかを自己制御することで、より確実に検索するようになる。幼児期から自己テストを繰り返すことは、このような実行機能の働きを強化することをつながるだろう。

子どもにおける学習方略としての自己テストの役割として、学習材料の長期の保持の促進効果、メタ認知の活性化、ならびに学習への動機づけの活性化、の3点を取上げて説明した。子どもにおける学習方略としての自己テストの第1の役割学習材料の個所や不確実な個所を学習者が再学習することによって、学習者は学習への動機づけを高めるようである。学習へのこのような動機づけの効果は、中・高校生だけでなく、小学生においても指摘できる。

また、学習者はテストの対策の方法として、テストに先立って当該のテスト範囲を学習することが一般的である。予めテストの日程と範囲が決まっておれば、学習者は当該のテストへの対策を工夫し、悪い点数を避け、よい点を取ろうとする欲求が生じるのが一般的である。「試験対策の勉強など、まったくする必要はない」と断言する学習者はまず皆無といってよいだろう。これらも小学生以上の学習者であれば、日常的に経験することである。

では、日常生活で、テストをおこなうことは少ないといってよい幼児の場合はどうであろうか。自己テストをすることで、テストの準備や、テストで間違ったところを修正しようとする意欲などとは無関係であるようだ。しかし、必ずしもそうではない。ある幼稚園では、たとえば足し算の練習をするときなど、「もっとしたい」といった声が少なくも上がることもある。足し算というテストを自らが実行することが、問題解決の意味をもつのである。また、単に絵本を読むだけでなく、「どんな絵本だった」と絵本の内容を質問したり、絵本の興味がある点を聞くことによって、絵本のさらなる学習が進んだとする幼稚園の先生の報告もある。自己テストによる学習への動機づけの活性化は、何ら教育測定・評価としてのテストが実施される学校教育の場だけに、限定されるものではない。

5 結論と今後の課題

子どもにおける学習方略としての自己テストの役割として、学習材料の長期の保持の促進効果、メタ認知の活性化、ならびに学習への動機づけの活性化、の3点を取上げて説明した。子どもにおける学習方略としての自己テストの第1の役割
である学習材料の長短の保全の促進効果に関する研究は、大学生を使った自己テストの研究に比較して少ないが、徐々に増えてきつつある。

これに対して、第2と第3の役割であるメタ認知ならびに学習への動機づけの活性化に関する子どもの自己テストの研究は、体系的に実施されていない。大学生を使ったメタ認知や学習への動機づけの研究では、学習時間の割り当てや試験対策等の研究から、Nelson, Dunlosky, Graf, and Narens (1994) や Lyle and Crawford (2011) などさまざまな研究を指摘できる。しかしながら子どもを用いた学習方策としての自己テストの役割で、メタ認知や学習への動機づけの解決に主眼をおいた研究は、現在のところ皆無である。既述したように、大学生でも自己テストを効果的な学習方策として使用する際は、大変低いことが報告されている (堤田・多恵, 2011; Karpicke et al., 2009; McCabe, 2011)。自己テストを効果的な学習方策として使用するかどうかは、使用者の学習方策観であり、メタ認知の働きを必要とする。これまで明確にされてきた子どもの記憶方策の研究成果に、自己テストを学習方策として使用することによる新たな視点を加味することができるとすると、メタ認知や学習への動機づけの活性化に関する成果である。

同様に、学習方策としての自己テストによる実行機能の役割については、まだ実証的な研究はなされていない。今後、学習方策としての自己テストを実施することが、子どもの実行機能の強化につながるという実証的な研究成果が求められる。

6 引用文献

堀田千絵 (2015). 学習時の反復検索による幼児の記憶保持の促進効果：語彙理解に遅れのある幼児への

Schneider, W., & Bjorklund, D.F. (1998). Memory. In...
7 注

1 神戸親和女子大学
2 関西福祉科学大学